Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.100
Filtrar
1.
Methods Mol Biol ; 2794: 331-340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630242

RESUMO

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by social deficits and stereotyped, repetitive patterns of behaviors, limited interests, and cognitive impairment. Especially, social deficit has been considered a core feature of ASD. Because of the limitations of the experimental approach in humans, valid animal models are essential in an effort to identify novel therapeutics for social deficits in ASD. The genetic and environmental factors are clinically relevant to the pathophysiology of ASD. Epidemiological studies demonstrate environmental interventions such as prenatal exposure to valproic acid (VPA). Prenatal exposure to VPA represents a robust model of ASD exhibiting face, construct, and predictive validity. Here, we introduce protocols of the social interaction test and the three-chamber test for evaluating social deficits in mice prenatally exposed to VPA.


Assuntos
Transtorno do Espectro Autista , Disfunção Cognitiva , Efeitos Tardios da Exposição Pré-Natal , Humanos , Feminino , Gravidez , Animais , Camundongos , Transtorno do Espectro Autista/genética , Comportamento Social , Modelos Animais , Ácido Valproico/uso terapêutico
2.
Proc Natl Acad Sci U S A ; 121(15): e2317769121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38564633

RESUMO

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by social and communication deficits and repetitive behaviors. The genetic heterogeneity of ASD presents a challenge to the development of an effective treatment targeting the underlying molecular defects. ASD gating charge mutations in the KCNQ/KV7 potassium channel cause gating pore currents (Igp) and impair action potential (AP) firing of dopaminergic neurons in brain slices. Here, we investigated ASD gating charge mutations of the voltage-gated SCN2A/NaV1.2 brain sodium channel, which ranked high among the ion channel genes with mutations in individuals with ASD. Our results show that ASD mutations in the gating charges R2 in Domain-II (R853Q), and R1 (R1626Q) and R2 (R1629H) in Domain-IV of NaV1.2 caused Igp in the resting state of ~0.1% of the amplitude of central pore current. The R1626Q mutant also caused significant changes in the voltage dependence of fast inactivation, and the R1629H mutant conducted proton-selective Igp. These potentially pathogenic Igp were exacerbated by the absence of the extracellular Mg2+ and Ca2+. In silico simulation of the effects of these mutations in a conductance-based single-compartment cortical neuron model suggests that the inward Igp reduces the time to peak for the first AP in a train, increases AP rates during a train of stimuli, and reduces the interstimulus interval between consecutive APs, consistent with increased neural excitability and altered input/output relationships. Understanding this common pathophysiological mechanism among different voltage-gated ion channels at the circuit level will give insights into the underlying mechanisms of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Canais de Sódio Disparados por Voltagem , Humanos , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Encéfalo , Mutação
3.
Sci Adv ; 10(15): eadf7001, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608030

RESUMO

Genes implicated in translation control have been associated with autism spectrum disorders (ASDs). However, some important genetic causes of autism, including the 16p11.2 microdeletion, bear no obvious connection to translation. Here, we use proteomics, genetics, and translation assays in cultured cells and mouse brain to reveal altered translation mediated by loss of the kinase TAOK2 in 16p11.2 deletion models. We show that TAOK2 associates with the translational machinery and functions as a translational brake by phosphorylating eukaryotic elongation factor 2 (eEF2). Previously, all signal-mediated regulation of translation elongation via eEF2 phosphorylation was believed to be mediated by a single kinase, eEF2K. However, we show that TAOK2 can directly phosphorylate eEF2 on the same regulatory site, but functions independently of eEF2K signaling. Collectively, our results reveal an eEF2K-independent signaling pathway for control of translation elongation and suggest altered translation as a molecular component in the etiology of some forms of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Ursidae , Animais , Camundongos , Transtorno Autístico/genética , Fator 2 de Elongação de Peptídeos , Fosforilação , Transtorno do Espectro Autista/genética , Bioensaio
4.
Sci Rep ; 14(1): 8558, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609494

RESUMO

Glutamate (Glu) is important for memory and learning. Hence, Glu imbalance is speculated to affect autism spectrum disorder (ASD) pathophysiology. The action of Glu is mediated through receptors and we analyzed four metabotropic Glu receptors (mGluR/GRM) in Indo-Caucasoid families with ASD probands and controls. The trait scores of the ASD probands were assessed using the Childhood Autism Rating Scale2-ST. Peripheral blood was collected, genomic DNA isolated, and GRM5 rs905646, GRM6 rs762724 & rs2067011, and GRM7 rs3792452 were analyzed by PCR/RFLP or Taqman assay. Expression of mGluRs was measured in the peripheral blood by qPCR. Significantly higher frequencies of rs2067011 'A' allele/ AA' genotype were detected in the probands. rs905646 'A 'exhibited significantly higher parental transmission. Genetic variants showed independent as well as interactive effects in the probands. Receptor expression was down-regulated in the probands, especially in the presence of rs905646 'AA', rs762724 'TT', rs2067011 'GG', and rs3792452 'CC'. Trait scores were higher in the presence of rs762724 'T' and rs2067011 'G'. Therefore, in the presence of risk genetic variants, down-regulated mGluR expression may increase autistic trait scores. Since our investigation was confined to the peripheral system, in-depth exploration involving peripheral as well as central nervous systems may validate our observation.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Receptores de Glutamato Metabotrópico , Humanos , Criança , Transtorno Autístico/genética , Transtorno do Espectro Autista/genética , Expressão Gênica , Ácido Glutâmico , Receptores de Glutamato Metabotrópico/genética
5.
Mol Autism ; 15(1): 12, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38566250

RESUMO

BACKGROUND: Glutamatergic synapse dysfunction is believed to underlie the development of Autism Spectrum Disorder (ASD) and Intellectual Disability (ID) in many individuals. However, identification of genetic markers that contribute to synaptic dysfunction in these individuals is notoriously difficult. Based on genomic analysis, structural modeling, and functional data, we recently established the involvement of the TRIO-RAC1 pathway in ASD and ID. Furthermore, we identified a pathological de novo missense mutation hotspot in TRIO's GEF1 domain. ASD/ID-related missense mutations within this domain compromise glutamatergic synapse function and likely contribute to the development of ASD/ID. The number of ASD/ID cases with mutations identified within TRIO's GEF1 domain is increasing. However, tools for accurately predicting whether such mutations are detrimental to protein function are lacking. METHODS: Here we deployed advanced protein structural modeling techniques to predict potential de novo pathogenic and benign mutations within TRIO's GEF1 domain. Mutant TRIO-9 constructs were generated and expressed in CA1 pyramidal neurons of organotypic cultured hippocampal slices. AMPA receptor-mediated postsynaptic currents were examined in these neurons using dual whole-cell patch clamp electrophysiology. We also validated these findings using orthogonal co-immunoprecipitation and fluorescence lifetime imaging (FLIM-FRET) experiments to assay TRIO mutant overexpression effects on TRIO-RAC1 binding and on RAC1 activity in HEK293/T cells. RESULTS: Missense mutations in TRIO's GEF1 domain that were predicted to disrupt TRIO-RAC1 binding or stability were tested experimentally and found to greatly impair TRIO-9's influence on glutamatergic synapse function. In contrast, missense mutations in TRIO's GEF1 domain that were predicted to have minimal effect on TRIO-RAC1 binding or stability did not impair TRIO-9's influence on glutamatergic synapse function in our experimental assays. In orthogonal assays, we find most of the mutations predicted to disrupt binding display loss of function but mutants predicted to disrupt stability do not reflect our results from neuronal electrophysiological data. LIMITATIONS: We present a method to predict missense mutations in TRIO's GEF1 domain that may compromise TRIO function and test for effects in a limited number of assays. Possible limitations arising from the model systems employed here can be addressed in future studies. Our method does not provide evidence for whether these mutations confer ASD/ID risk or the likelihood that such mutations will result in the development of ASD/ID. CONCLUSIONS: Here we show that a combination of structure-based computational predictions and experimental validation can be employed to reliably predict whether missense mutations in the human TRIO gene impede TRIO protein function and compromise TRIO's role in glutamatergic synapse regulation. With the growing accessibility of genome sequencing, the use of such tools in the accurate identification of pathological mutations will be instrumental in diagnostics of ASD/ID.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Humanos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Células HEK293 , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Mutação , Mutação de Sentido Incorreto , Neurônios/metabolismo
6.
Genes Brain Behav ; 23(2): e12892, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560770

RESUMO

Mutations in CHD8 are one of the highest genetic risk factors for autism spectrum disorder. Studies in mice that investigate underlying mechanisms have shown Chd8 haploinsufficient mice display some trait disruptions that mimic clinical phenotypes, although inconsistencies have been reported in some traits across different models on the same strain background. One source of variation across studies may be the impact of Chd8 haploinsufficiency on maternal-offspring interactions. While differences in maternal care as a function of Chd8 genotype have not been studied directly, a previous study showed that pup survival was reduced when reared by Chd8 heterozygous dams compared with wild-type (WT) dams, suggesting altered maternal care as a function of Chd8 genotype. Through systematic observation of the C57BL/6 strain, we first determined the impact of Chd8 haploinsufficiency in the offspring on WT maternal care frequencies across preweaning development. We next determined the impact of maternal Chd8 haploinsufficiency on pup care. Compared with litters with all WT offspring, WT dams exhibited less frequent maternal behaviors toward litters consisting of offspring with mixed Chd8 genotypes, particularly during postnatal week 1. Dam Chd8 haploinsufficiency decreased litter survival and increased active maternal care also during postnatal week 1. Determining the impact of Chd8 haploinsufficiency on early life experiences provides an important foundation for interpreting offspring outcomes and determining mechanisms that underlie heterogeneous phenotypes.


Assuntos
Transtorno do Espectro Autista , Animais , Feminino , Camundongos , Transtorno do Espectro Autista/genética , Genótipo , Haploinsuficiência , Camundongos Endogâmicos C57BL , Fenótipo
7.
Ecotoxicol Environ Saf ; 275: 116257, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564871

RESUMO

BACKGROUND: Growing evidence has revealed the impacts of exposure to fine particulate matter (PM2.5) and dysbiosis of gut microbiota on neuropsychiatric disorders, but the causal inference remains controversial due to residual confounders in observational studies. METHODS: This study aimed to examine the causal effects of exposure to PM2.5 on 4 major neuropsychiatric disorders (number of cases = 18,381 for autism spectrum disorder [ASD], 38,691 for attention deficit hyperactivity disorder [ADHD], 67,390 for schizophrenia, and 21,982 cases for Alzheimer's disease [AD]), and the mediation pathway through gut microbiota. Two-sample Mendelian randomization (MR) analyses were performed, in which genetic instruments were identified from genome-wide association studies (GWASs). The included GWASs were available from (1) MRC Integrative Epidemiology Unit (MRC-IEU) for PM2.5, PMcoarse, PM10, and NOX; (2) the Psychiatric Genomics Consortium (PGC) for ASD, ADHD, and schizophrenia; (3) MRC-IEU for AD; and (4) MiBioGen for gut microbiota. Multivariable MR analyses were conducted to adjust for exposure to NOX, PMcoarse, and PM10. We also examined the mediation effects of gut microbiota in the associations between PM2.5 exposure levels and neuropsychiatric disorders, using two-step MR analyses. RESULTS: Each 1 standard deviation (1.06 ug/m3) increment in PM2.5 concentrations was associated with elevated risk of ASD (odds ratio [OR] 1.42, 95% confidence interval [CI] 1.00-2.02), ADHD (1.51, 1.15-1.98), schizophrenia (1.47, 1.15-1.87), and AD (1.57, 1.16-2.12). For all the 4 neurodevelopmental disorders, the results were robust under various sensitivity analyses, while the MR-Egger method yielded non-significant outcomes. The associations remained significant for all the 4 neuropsychiatric disorders after adjusting for PMcoarse, while non-significant after adjusting for NOX and PM10. The effects of PM2.5 exposure on ADHD and schizophrenia were partially mediated by Lachnospiraceae and Barnesiella, with the proportions ranging from 8.31% to 15.77%. CONCLUSIONS: This study suggested that exposure to PM2.5 would increase the risk of neuropsychiatric disorders, partially by influencing the profile of gut microbiota. Comprehensive regulations on air pollutants are needed to help prevent neuropsychiatric disorders.


Assuntos
Doença de Alzheimer , Transtorno do Espectro Autista , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Transtorno do Espectro Autista/etiologia , Transtorno do Espectro Autista/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Material Particulado/efeitos adversos
8.
J Neurodev Disord ; 16(1): 17, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632549

RESUMO

Monogenic disorders account for a large proportion of population-attributable risk for neurodevelopmental disabilities. However, the data necessary to infer a causal relationship between a given genetic variant and a particular neurodevelopmental disorder is often lacking. Recognizing this scientific roadblock, 13 Intellectual and Developmental Disabilities Research Centers (IDDRCs) formed a consortium to create the Brain Gene Registry (BGR), a repository pairing clinical genetic data with phenotypic data from participants with variants in putative brain genes. Phenotypic profiles are assembled from the electronic health record (EHR) and a battery of remotely administered standardized assessments collectively referred to as the Rapid Neurobehavioral Assessment Protocol (RNAP), which include cognitive, neurologic, and neuropsychiatric assessments, as well as assessments for attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Co-enrollment of BGR participants in the Clinical Genome Resource's (ClinGen's) GenomeConnect enables display of variant information in ClinVar. The BGR currently contains data on 479 participants who are 55% male, 6% Asian, 6% Black or African American, 76% white, and 12% Hispanic/Latine. Over 200 genes are represented in the BGR, with 12 or more participants harboring variants in each of these genes: CACNA1A, DNMT3A, SLC6A1, SETD5, and MYT1L. More than 30% of variants are de novo and 43% are classified as variants of uncertain significance (VUSs). Mean standard scores on cognitive or developmental screens are below average for the BGR cohort. EHR data reveal developmental delay as the earliest and most common diagnosis in this sample, followed by speech and language disorders, ASD, and ADHD. BGR data has already been used to accelerate gene-disease validity curation of 36 genes evaluated by ClinGen's BGR Intellectual Disability (ID)-Autism (ASD) Gene Curation Expert Panel. In summary, the BGR is a resource for use by stakeholders interested in advancing translational research for brain genes and continues to recruit participants with clinically reported variants to establish a rich and well-characterized national resource to promote research on neurodevelopmental disorders.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Masculino , Feminino , Transtorno do Espectro Autista/genética , Encéfalo , Sistema de Registros , Metiltransferases
9.
J Int Med Res ; 52(4): 3000605241245293, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619175

RESUMO

In recent years, the incidence of autism spectrum disorder (ASD) has increased, but the etiology and pathogenesis remain unclear. In this narrative review, we review and systematically summarize the methods used to construct animal models to study ASD and the related behavioral studies based on recent literature. Utilization of various ASD animal models can complement research on the etiology, pathogenesis, and core behaviors of ASD, providing information and a foundation for further basic research and clinical treatment of ASD.


Assuntos
Transtorno do Espectro Autista , Animais , Transtorno do Espectro Autista/genética , Modelos Animais
10.
ACS Chem Neurosci ; 15(8): 1635-1642, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38557009

RESUMO

CHD8 is a high penetrance, high confidence risk gene for autism spectrum disorder (ASD), a neurodevelopmental disorder that is substantially more prevalent among males than among females. Recent studies have demonstrated variable sex differences in the behaviors and synaptic phenotypes of mice carrying different heterozygous ASD-associated mutations in Chd8. We examined functional and structural cellular phenotypes linked to synaptic transmission in deep layer pyramidal neurons of the prefrontal cortex in male and female mice carrying a heterozygous, loss-of-function Chd8 mutation in the C57BL/6J strain across development from postnatal day 2 to adulthood. Notably, excitatory neurotransmission was decreased only in Chd8+/- males with no differences in Chd8+/- females, and the majority of alterations in inhibitory transmission were found in males. Similarly, analysis of cellular morphology showed male-specific effects of reduced Chd8 expression. Both functional and structural phenotypes were most prominent at postnatal days 14-20, a stage approximately corresponding to childhood. Our findings suggest that the effects of Chd8 mutation are predominantly seen in males and are maximal during childhood.


Assuntos
Transtorno do Espectro Autista , Humanos , Feminino , Masculino , Camundongos , Animais , Transtorno do Espectro Autista/genética , Haploinsuficiência , Camundongos Endogâmicos C57BL , Fenótipo , Córtex Pré-Frontal
11.
Mol Genet Genomic Med ; 12(4): e2428, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581124

RESUMO

BACKGROUND: RASopathies are associated with an increased risk of autism spectrum disorder (ASD). For neurofibromatosis type 1 (NF1) there is ample evidence for this increased risk, while for other RASopathies this association has been studied less. No specific ASD profile has been delineated so far for RASopathies or a specific RASopathy individually. METHODS: We conducted a systematic review to investigate whether a specific RASopathy is associated with a specific ASD profile, or if RASopathies altogether have a distinct ASD profile compared to idiopathic ASD (iASD). We searched PubMed, Web of Science, and Open Grey for data about ASD features in RASopathies and potential modifiers. RESULTS: We included 41 articles on ASD features in NF1, Noonan syndrome (NS), Costello syndrome (CS), and cardio-facio-cutaneous syndrome (CFC). Individuals with NF1, NS, CS, and CFC on average have higher ASD symptomatology than healthy controls and unaffected siblings, though less than people with iASD. There is insufficient evidence for a distinct ASD phenotype in RASopathies compared to iASD or when RASopathies are compared with each other. We identified several potentially modifying factors of ASD symptoms in RASopathies. CONCLUSIONS: Our systematic review found no convincing evidence for a specific ASD profile in RASopathies compared to iASD, or in a specific RASopathy compared to other RASopathies. However, we identified important limitations in the research literature which may also account for this result. These limitations are discussed and recommendations for future research are formulated.


Assuntos
Transtorno do Espectro Autista , Síndrome de Costello , Cardiopatias Congênitas , Neurofibromatose 1 , Síndrome de Noonan , Humanos , Transtorno do Espectro Autista/genética , Síndrome de Noonan/genética , Cardiopatias Congênitas/genética , Síndrome de Costello/genética , Insuficiência de Crescimento/genética , Neurofibromatose 1/genética
12.
Transl Psychiatry ; 14(1): 171, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555309

RESUMO

There is widespread overlap across major psychiatric disorders, and this is the case at different levels of observations, from genetic variants to brain structures and function and to symptoms. However, it remains unknown to what extent these commonalities at different levels of observation map onto each other. Here, we systematically review and compare the degree of similarity between psychiatric disorders at all available levels of observation. We searched PubMed and EMBASE between January 1, 2009 and September 8, 2022. We included original studies comparing at least four of the following five diagnostic groups: Schizophrenia, Bipolar Disorder, Major Depressive Disorder, Autism Spectrum Disorder, and Attention Deficit Hyperactivity Disorder, with measures of similarities between all disorder pairs. Data extraction and synthesis were performed by two independent researchers, following the PRISMA guidelines. As main outcome measure, we assessed the Pearson correlation measuring the degree of similarity across disorders pairs between studies and biological levels of observation. We identified 2975 studies, of which 28 were eligible for analysis, featuring similarity measures based on single-nucleotide polymorphisms, gene-based analyses, gene expression, structural and functional connectivity neuroimaging measures. The majority of correlations (88.6%) across disorders between studies, within and between levels of observation, were positive. To identify a consensus ranking of similarities between disorders, we performed a principal component analysis. Its first dimension explained 51.4% (95% CI: 43.2, 65.4) of the variance in disorder similarities across studies and levels of observation. Based on levels of genetic correlation, we estimated the probability of another psychiatric diagnosis in first-degree relatives and showed that they were systematically lower than those observed in population studies. Our findings highlight that genetic and brain factors may underlie a large proportion, but not all of the diagnostic overlaps observed in the clinic.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Transtorno Bipolar , Transtorno Depressivo Maior , Transtornos Mentais , Esquizofrenia , Humanos , Transtorno Depressivo Maior/genética , Transtorno do Espectro Autista/genética , Transtornos Mentais/genética , Transtornos Mentais/psicologia , Transtorno Bipolar/genética , Transtorno Bipolar/epidemiologia , Esquizofrenia/genética , Esquizofrenia/epidemiologia , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia
13.
J Neurodev Disord ; 16(1): 13, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539105

RESUMO

BACKGROUND: Global developmental delay or intellectual disability usually accompanies various genetic disorders as a part of the syndrome, which may include seizures, autism spectrum disorder and multiple congenital abnormalities. Next-generation sequencing (NGS) techniques have improved the identification of pathogenic variants and genes related to developmental delay. This study aimed to evaluate the yield of whole exome sequencing (WES) and neurodevelopmental disorder gene panel sequencing in a pediatric cohort from Ukraine. Additionally, the study computationally predicted the effect of variants of uncertain significance (VUS) based on recently published genetic data from the country's healthy population. METHODS: The study retrospectively analyzed WES or gene panel sequencing findings of 417 children with global developmental delay, intellectual disability, and/or other symptoms. Variants of uncertain significance were annotated using CADD-Phred and SIFT prediction scores, and their frequency in the healthy population of Ukraine was estimated. RESULTS: A definitive molecular diagnosis was established in 66 (15.8%) of the individuals. WES diagnosed 22 out of 37 cases (59.4%), while the neurodevelopmental gene panel identified 44 definitive diagnoses among the 380 tested patients (12.1%). Non-diagnostic findings (VUS and carrier) were reported in 350 (83.2%) individuals. The most frequently diagnosed conditions were developmental and epileptic encephalopathies associated with severe epilepsy and GDD/ID (associated genes ARX, CDKL5, STXBP1, KCNQ2, SCN2A, KCNT1, KCNA2). Additionally, we annotated 221 VUS classified as potentially damaging, AD or X-linked, potentially increasing the diagnostic yield by 30%, but 18 of these variants were present in the healthy population of Ukraine. CONCLUSIONS: This is the first comprehensive study on genetic causes of GDD/ID conducted in Ukraine. This study provides the first comprehensive investigation of the genetic causes of GDD/ID in Ukraine. It presents a substantial dataset of diagnosed genetic conditions associated with GDD/ID. The results support the utilization of NGS gene panels and WES as first-line diagnostic tools for GDD/ID cases, particularly in resource-limited settings. A comprehensive approach to resolving VUS, including computational effect prediction, population frequency analysis, and phenotype assessment, can aid in further reclassification of deleterious VUS and guide further testing in families.


Assuntos
Transtorno do Espectro Autista , Epilepsia , Deficiência Intelectual , Criança , Humanos , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Testes Genéticos/métodos , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/complicações , Estudos Retrospectivos , Epilepsia/complicações , Canais de Potássio Ativados por Sódio/genética , Proteínas do Tecido Nervoso/genética
14.
BMC Psychiatry ; 24(1): 232, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539137

RESUMO

BACKGROUND: Neurodevelopmental disorders (NDDs), such as Attention-Deficit/Hyperactivity Disorder (ADHD), Autism Spectrum Disorder (ASD), and Tourette Syndrome (TS), have been extensively studied for their multifaceted impacts on social and emotional well-being. Recently, there has been growing interest in their potential relationship with fracture risks in adulthood. This study aims to explore the associations between these disorders and fracture rates, in order to facilitate better prevention and treatment. METHODS: Employing a novel approach, this study utilized Mendelian randomization (MR) analysis to investigate the complex interplay between ADHD, ASD, TS, and fractures. The MR framework, leveraging extensive genomic datasets, facilitated a systematic examination of potential causal relationships and genetic predispositions. RESULTS: The findings unveil intriguing bidirectional causal links between ADHD, ASD, and specific types of fractures. Notably, ADHD is identified as a risk factor for fractures, with pronounced associations in various anatomical regions, including the skull, trunk, and lower limbs. Conversely, individuals with specific fractures, notably those affecting the femur and lumbar spine, exhibit an increased genetic predisposition to ADHD and ASD. In this research, no correlation was found between TS and fractures, or osteoporosis.These results provide a genetic perspective on the complex relationships between NDDs and fractures, emphasizing the importance of early diagnosis, intervention, and a holistic approach to healthcare. CONCLUSION: This research sheds new light on the intricate connections between NDDs and fractures, offering valuable insights into potential risk factors and causal links. The bidirectional causal relationships between ADHD, ASD, and specific fractures highlight the need for comprehensive clinical approaches that consider both NDDs and physical well-being.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Fraturas Ósseas , Transtornos do Neurodesenvolvimento , Osteoporose , Síndrome de Tourette , Humanos , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/psicologia , Análise da Randomização Mendeliana , Transtornos do Neurodesenvolvimento/genética , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Osteoporose/genética , Fraturas Ósseas/genética , Predisposição Genética para Doença
15.
Elife ; 132024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38525876

RESUMO

Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC-associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.


Although the clinical presentation of individuals with autism spectrum disorder (ASD) can vary widely, the core features are repetitive behaviors and difficulties with social interactions and communication. In most cases, the cause of autism is unknown. However, in some cases, such as a form of ASD known as 16p11.2 deletion syndrome, specific genetic changes are responsible. Despite this variability in possible causes and clinical manifestations, the similarity of the core behavioral symptoms across different forms of the disorder indicates that there could be a shared biological mechanism. Furthermore, genetic studies suggest that abnormalities in early fetal brain development could be a crucial underlying cause of ASD. In order to form the complex structure of the brain, fetal brain cells must migrate and start growing extensions that ultimately become key structures of neurons. To test for shared biological mechanisms, Prem et al. reprogrammed blood cells from people with either 16p11.2 deletion syndrome or ASD with an unknown cause to become fetal-like brain cells. Experiments showed that both migration of the cells and their growth of extensions were similarly disrupted in the cells derived from both groups of individuals with autism. These crucial developmental changes were driven by alterations to an important signaling molecule in a pathway involved in brain function, known as the mTOR pathway. However, in some cells the pathway was overactive, whereas in others it was underactive. To probe the potential of the mTOR pathway as a therapeutic target, Prem et al. tested drugs that manipulate the pathway, finding that they could successfully reverse the defects in cells derived from people with both types of ASD. The discovery that a shared biological process may underpin different forms of ASD is important for understanding the early brain changes that are involved. A common target, like the mTOR pathway, could offer hope for treatments for a wide range of ASDs. However, to translate these benefits to the clinic, further research is needed to understand whether a treatment that is effective in fetal cells would also benefit people with autism.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Células-Tronco Neurais , Humanos , Transtorno Autístico/genética , Transtorno do Espectro Autista/genética , Neuritos , Serina-Treonina Quinases TOR
16.
Genes (Basel) ; 15(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38540415

RESUMO

Fragile X syndrome (FXS) is the most common heritable cause of intellectual disability and autism spectrum disorder. The syndrome is often caused by greatly reduced or absent protein expression from the fragile X messenger ribonucleoprotein 1 (FMR1) gene due to expansion of a 5'-non-coding trinucleotide (CGG) element beyond 200 repeats (full mutation). To better understand the complex relationships among FMR1 allelotype, methylation status, mRNA expression, and FMR1 protein (FMRP) levels, FMRP was quantified in peripheral blood mononuclear cells for a large cohort of FXS (n = 154) and control (n = 139) individuals using time-resolved fluorescence resonance energy transfer. Considerable size and methylation mosaicism were observed among individuals with FXS, with FMRP detected only in the presence of such mosaicism. No sample with a minimum allele size greater than 273 CGG repeats had significant levels of FMRP. Additionally, an association was observed between FMR1 mRNA and FMRP levels in FXS samples, predominantly driven by those with the lowest FMRP values. This study underscores the complexity of FMR1 allelotypes and FMRP expression and prompts a reevaluation of FXS therapies aimed at reactivating large full mutation alleles that are likely not capable of producing sufficient FMRP to improve cognitive function.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Humanos , Síndrome do Cromossomo X Frágil/genética , Expansão das Repetições de Trinucleotídeos/genética , Leucócitos Mononucleares/metabolismo , Transtorno do Espectro Autista/genética , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Pediatr Neurol ; 154: 1-3, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38428335

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder. Unique ASD subtypes have been proposed based on specific genotype-phenotype combinations. The ASD subtype associated with various chromodomain helicase DNA-binding protein 8 (CHD8) mutations has been associated with an incidence of autistic regression greater than that of all-cause ASD, but the mean age of onset of this subtype remains unknown. METHODS: Here we describe a patient with a known de novo CHD8 gene mutation (heterozygous c.2565del) who experienced a profound developmental regression and neurocognitive decline at age 13 years following periods of acute viral illness. RESULTS: The patient developed treatment-refractory catatonia and self-injurious behaviors leading to marked facial disfigurement. Unfortunately, interventions with immunomodulatory medications, psychotropic medications, and electroconvulsive therapy did not lead to sustained symptom improvement or a full return to baseline. CONCLUSIONS: Our case demonstrates a clinical scenario in which a devastating developmental regression and neurocognitive decline occurred with profound accentuation of previously identified autistic features at an age atypical for autistic regression, following sequential viral infections, thereby raising the question of whether immune dysregulation may be a contributing factor. Regression in patients with monogenic mutations in the CHD8 gene warrants further study to elucidate the mechanisms of illness and the anticipated developmental trajectory.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Criança , Humanos , Adolescente , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/genética , Transtorno Autístico/complicações , Mutação/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
18.
Mol Brain ; 17(1): 16, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475840

RESUMO

Neuroligin (NLGN) 3 is a postsynaptic cell adhesion protein organizing synapse formation through two different types of transsynaptic interactions, canonical interaction with neurexins (NRXNs) and a recently identified noncanonical interaction with protein tyrosine phosphatase (PTP) δ. Although, NLGN3 gene is known as a risk gene for neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability (ID), the pathogenic contribution of the canonical NLGN3-NRXN and noncanonical NLGN3-PTPδ pathways to these disorders remains elusive. In this study, we utilized Nlgn3 mutant mice selectively lacking the interaction with either NRXNs or PTPδ and investigated their social and memory performance. Neither Nlgn3 mutants showed any social cognitive deficiency in the social novelty recognition test. However, the Nlgn3 mutant mice lacking the PTPδ pathway exhibited significant decline in the social conditioned place preference (sCPP) at the juvenile stage, suggesting the involvement of the NLGN3-PTPδ pathway in the regulation of social motivation and reward. In terms of learning and memory, disrupting the canonical NRXN pathway attenuated contextual fear conditioning while disrupting the noncanonical NLGN3-PTPδ pathway enhanced it. Furthermore, disruption of the NLGN3-PTPδ pathway negatively affected the remote spatial reference memory in the Barnes maze test. These findings highlight the differential contributions of the canonical NLGN3-NRXN and noncanonical NLGN3-PTPδ synaptogenic pathways to the regulation of higher order brain functions associated with ASD and ID.


Assuntos
Transtorno do Espectro Autista , Moléculas de Adesão Celular Neuronais , Deficiência Intelectual , Proteínas de Membrana , Proteínas do Tecido Nervoso , Animais , Camundongos , Transtorno do Espectro Autista/genética , Moléculas de Adesão Celular , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Cognição , Aprendizagem em Labirinto , Mudança Social , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
19.
Psychiatr Genet ; 34(2): 68-69, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38441145

RESUMO

Autism spectrum disorder is a neurodevelopmental condition that involves limitations in social communication and various stereotypical repetitive behaviors. Genetic and environmental factors both play a role in the etiology. Numerous genetic syndromes accompanying autism spectrum disorders have been reported. Hypoventilation, hypotonia, intellectual disability, epilepsy, eye abnormality (HIDEA) syndrome is a rare genetic condition consisting of a combination of features such as hypoventilation, hypotonia, intellectual disability, eye abnormalities, and epilepsy. Very few cases of HIDEA syndrome have been reported in the literature to date. To the best of our knowledge, no cases of comorbid autism spectrum disorder and HIDEA syndrome have previously been reported. This report describes two brothers with a pathogenic P4HTM gene variant and autism spectrum disorder. One was diagnosed with HIDEA syndrome, while the other was a healthy carrier.


Assuntos
Anormalidades Múltiplas , Transtorno do Espectro Autista , Epilepsia , Deficiência Intelectual , Humanos , Masculino , Anormalidades Múltiplas/genética , Transtorno do Espectro Autista/genética , Epilepsia/genética , Hipoventilação/complicações , Deficiência Intelectual/genética , Hipotonia Muscular/complicações , Hipotonia Muscular/genética , Irmãos , Síndrome
20.
Mol Biol Rep ; 51(1): 415, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472517

RESUMO

Estrogen regulates a wide range of neuronal functions in the brain, such as dendritic spine formation, remodeling of synaptic plasticity, cognition, neurotransmission, and neurodevelopment. Estrogen interacts with intracellular estrogen receptors (ERs) and membrane-bound ERs to produce its effect via genomic and non-genomic pathways. Any alterations in these pathways affect the number, size, and shape of dendritic spines in neurons associated with psychiatric diseases. Increasing evidence suggests that estrogen fluctuation causes changes in dendritic spine density, morphology, and synapse numbers of excitatory and inhibitory neurons differently in males and females. In this review, we discuss the role of estrogen hormone in rodents and humans based on sex differences. First, we explain estrogen role in learning and memory and show that a high estrogen level alleviates the deficits in learning and memory. Secondly, we point out that estrogen produces a striking difference in emotional memories in men and women, which leads them to display sex-specific differences in underlying neuronal signaling. Lastly, we discuss that fluctuations in estrogen levels in men and women are related to neuropsychiatric disorders, including schizophrenia, autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), bipolar disorder (BPD), major depressive disorder (MDD), substance use disorder (SUD), and anxiety disorders.


Assuntos
Transtorno do Espectro Autista , Transtorno Depressivo Maior , Humanos , Feminino , Masculino , Transtorno do Espectro Autista/genética , Caracteres Sexuais , Transtorno Depressivo Maior/metabolismo , Estrogênios/metabolismo , Sinapses/metabolismo , Emoções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...